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Inflation, Extra Dimensions, and VL ' 1
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An (N 1 1)-dimensional quantum mechanical model for the origin of the universe
results in a 58e-fold inflation and a cosmological constant/vacuum energy density
with VL ' 1.

Turner [1] claims astrophysical observations require a cosmological
constant/vacuum energy density with VL ' 1, and notes that few models
produce a cosmological constant of this magnitude. This paper considers an
(N 1 1)-dimensional quantum mechanical model for the origin of the universe
from a quantum fluctuation [2]. In the model, inflation produces a cosmologi-
cal constant with VL ' 1. The model is developed [2] by combining general
relativity with ordinary quantum mechanics [3] and additional compact
dimensions, as suggested by superstring theories or M-theory. It is an attempt
at a quantum theory of space, but it is obviously not a quantum field theory
of gravity.

In the model, the size of the extra dimensions corresponds to a gauge
singlet scalar field [4] that is constant throughout our three-dimensional space
and drives the inflation of three-dimensional space. The radius of curvature
of a closed Friedmann universe containing a scalar field f satisfies [5]
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where «r , «m , and R0 are respectively the radiation density, matter density,
and radius of curvature of the universe today, and «f 5 1–2 (f/t)2 1 Vf(f).

The model is formulated in an N-dimensional curvature space describing
the curvature of a homogeneous N-dimensional physical space, where N must
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be greater than six. The curvature space has two subspaces related to the
Friedmann universe and the compact dimensions. The coordinate in each
dimension of a state in the curvature space is the radius of curvature of the
corresponding dimension of that state in the N-dimensional physical space.
For the universe to begin from a quantum fluctuation, all total quantum
numbers must be zero. When the total energy and total angular momentum
in curvature space is zero, the Schrödinger equation for the N-dimensional
radius of curvature is 2("2/2m)¹2

RC 1 VRC 5 0, where R is the magnitude
of an N-dimensional vector

›
R and m is an effective mass. Let R2 5 R2 1

r 2, where R is the radial coordinate in the three-dimensional subspace describ-
ing the curvature of the isotropic Friedmann universe and r is the radial
coordinate in the (n 5 N 2 3)-dimensional subspace describing the curvature
of the compact dimensions. Separation of VR into terms involving only R
and terms involving only r is suggested by the fact that the Friedmann
equation without explicit dependence on compact dimensions has been a
useful model for our (3 1 1)-dimensional universe. If VR 5 VR 1 Vr ,
separating variables gives
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where each bracket must be constant. These constants are denoted 2E and
E, respectively. The Schrödinger equation for the radius of curvature R is
the quantum mechanical analog of the Friedmann equation [3]. For a radiation-
dominated universe with «f 5 0, this Schrödinger equation is
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An S-wave Schrödinger equation must be used for the compact dimensions
to make the total N-dimensional “angular momentum” in the curvature space
zero. Writing C 5 R21 c(R)r2(n21)/2c8(r), we obtain the separated Schröd-
inger equation
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In this model, the potential Vr constraining the size of the compact dimensions
is parametrized as Vr 5 kra. Choosing a 5 4 produces a universe similar to
our own [2]. If k 5 "2(n 2 1)(n 2 3)/(16md6), the minimum of the effective
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potential "2(n 2 1)(n 2 3)/(8mr 2) 1 kr 4 for the compact dimensions is at
the Planck length d.

Initially, gravity and the strong-electroweak (SEW) force had equal
strength, so Gi m2

p /"c 5 1, the gravitational constant was Gi 5 1.70 3 1038G,
the Planck length was di 5 2.11 3 10214 cm, and the Planck mass Mi equaled
the proton mass mp. The minimum of the effective potential for the compact
dimensions was initially at r 5 di. The effective potential for the compact
dimensions can be approximated by a harmonic oscillator potential near its
minimum, so the ground-state energy of the effective potential is
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In the initial state, mc2/2 5 "2b2/2md2
i and m 5 b !"c/Gi, where !"c/Gi 5

mp was the initial Planck mass. If, for example, the fundamental theory of
the forces governing the universe requires 9, 10, or 11 spatial dimensions
(as might be true in the ardently sought superstring theory or M-theory), 3.22
, b , 4.51.

The universe began with a quantum fluctuation into the ground state of
a radiation-dominated universe obeying the Schrödinger equation (1), with
gravitational constant Gi , radius ^R& 5 di and energy 21–2 bmpc2, and the
ground state of the compact dimensions with radius ^r& 5 di and energy
1–2 bmpc2. This initial state had dR/dt 5 dr/dt 5 0. Both the Friedmann universe
and the compact dimensions were in the ground state and could not lose
energy to the other. So the two subsystems were effectively decoupled and
«f was zero.

After the initial state arose from a quantum fluctuation, a quantum
tunneling transition occurred from the initial state to another state with zero
total curvature energy, where the minimum of the effective potential in the
compact dimensions is at r 5 d, k 5 "2(n 2 1)(n 2 3)/(16bMd6), and the
ground-state energy of the compact dimensions is 1–2 bMc2. This post-transition
state was the beginning of today’s universe, where the size of the compact
dimensions corresponds to a scalar field f that is constant throughout the
Friedmann universe. The scalar field f 5 0 when r 5 di , if it is related to
the size of the compact dimensions [4] by f 5 (j/di)!"/c ln (di /r). Here j
is a real number to be obtained from the fundamental theory of forces.

Immediately after the transition, ^R& 5 ^r& 5 di and dR/dt 5 dr/dt 5
0. The compact dimensions were in a highly excited state of the effective
potential Vr , with wave packet localized at the classical turning radius r 5
di , and curvature energy
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At transition, the Friedmann universe satisfied the Schrödinger equation
for a universe containing radiation and a scalar field:
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Here, «f models the effect of the compact dimensions on the Friedmann
universe and A8 is proportional to the number of photons in the universe [6].
The top of the effective potential in equation (2) is at R4

peak 5 A8/«f. The
transition energy E8 coincided with the top of the potential, so the transition
resulted in a state with wave packet centered at R 5 di in unstable equilibrium
with dR/dt 5 0. At transition, «f 5 A8/d4

i , so «r 5 «f and
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Because the bottom of the effective potential in the compact dimensions
is now at r 5 d, Vf(0) Þ 0 at transition. When the curvature energy of the
compact dimensions dropped to the ground-state energy 1–2 bMc2, the curvature
energy of the Friedmann universe was raised to the Einstein value 21–2 bMc2.
The scalar field f increased from zero to ff as the characteristic size of the
compact dimensions decreased from di to d, G decreased from Gi to its
present value, and the Planck mass increased from mp to its present value.
When R . Rpeak, the «f term in equation (2) dominated and the Friedmann
universe inflated. The radiation energy density «r increased as the energy in
the scalar field converted to radiation. At the end of inflation, «f ¿ «rad, and
the radiation-dominated universe satisfied equation (1) with A 5 ("/3c) (di /
d)6. Then, VR 5 3.8(m/2)(1069/R2) g cm2/sec2, near the approximate value VR

5 5.6 (m/2)(1071/R2) g cm2/sec2 estimated for our universe [2].
The model can be used to estimate the vacuum energy density of today’s

universe (and the extent of inflation) by assuming that the curvature energy
of the compact dimensions dropped instantaneously to the ground state when
the wave packet reached ^r& 5 di , and noting that a spatially constant scalar
field has only one degree of freedom. In what follows, the ratio E8/Eg of the
transition energy to the ground state energy is taken as 5 3 1075. (The ratio
5.76 3 1075 for 10 space dimensions).

At the end of inflation, the temperature of the universe was Te , and the
compact dimensions were in the ground state with curvature energy Eg. At
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that time, ḟ2 5 0 and the energy density of the spatially constant scalar field
in the Friedmann universe was «f 5 Vf(ff) thereafter. Immediately after the
quantum transition from the symmetric initial state (where both the compact
dimensions and the Friedmann universe were in their ground states) the
curvature energy and the entropy of the compact dimensions was 5 3 1075

larger than at the end of inflation. The energy density of the spatially constant
scalar field in the Friedmann universe was «f 5 Vf(0). When the curvature
energy of the compact dimensions dropped to the ground state, the entropy
of the compact dimensions was lowered by a factor of 0.2 3 10275 and the
entropy of the Friedmann universe was raised by a factor of 5 3 1075. Then,
the temperature of the Friedmann universe was (5 3 1075)1/3 Te 5 1.7 3 1025

Te. As the wave packet described by equation (2) moved away from the
peak of the effective potential at R 5 dt , the Friedmann universe expanded
exponentially and isentropically (driven by the scalar field energy) until
inflation ended when ḟ2 5 0 and the temperature of the universe reached
Te. Thus, the scale factor of the Friedmann universe increased by a factor of
1.7 3 1025 during inflation. This 58e-fold inflation is within the limits set
by fluctuations in the microwave background radiation [7].

From the Schrödinger equation (2) at transition, the potential term was
a3nE8/a3n 5 E8 when the Friedmann universe was at the unstable equilibrium
point immediately after the quantum transition from the initial state. Here
a 5 d, is the scale factor, n is the unit coordinate volume, and E8/n is the
energy density (i.e., the energy in a unit coordinate volume [8]). So the energy
density in the scalar field in the Friedmann universe at the start of inflation
was Vf(0) 5 E8/2 ' 1092 g cm21 sec22. A spatially constant scalar field has
only one degree of freedom, and the energy density in the scalar field is
proportional to the fourth power of the temperature [9]. So the energy density
of the scalar field at the end of inflation was

«e '
T 4

e

(1.7 3 1025Te)4 1092 g cm21 sec22 ' 1029 g cm21 sec22

The above argument can be restated as follows. Suppose the universe
were to be “run in reverse” from the moment when inflation ended and
the temperature of the universe was Te. Then isentropic compression to a
temperature (5 3 1075)1/3 Te 5 1.7 3 1025 Te would be necessary to raise the
entropy density of the Friedmann universe to the value it had immediately
after the curvature energy of the compact dimensions fell to the ground state,
and raise the energy density of the scalar field to the value it had at the time
of that transition.

At the end of inflation, after the scalar field stops decaying into radiation
and ḟ2 5 0, the scalar field equation of state is p 5 2«. So the energy
density of the scalar field in the Friedmann universe did not change after
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inflation [6]. If H0 5 65 km sec21 Mpc21 [1], then the critical density is
rc 5 3H2

0 /8pG 5 7.9 3 10230 g cm23 and the critical energy density is «c 5
rcc2 5 7.11 3 1029 gm cm2 sec22 cm23. Thus, in this model, VL 5
«e /«c ' 1.

The decay rate of the scalar field to radiation, to be obtained from the
fundamental theory of forces, is constrained by the requirement that density
fluctuations in the cosmic microwave background have the correct magnitude
[10]. The matter density produced in the radiation-dominated universe after
inflation, and thus Vm , must also be calculated from the GUT obtained from
the fundamental theory of forces.
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